3,128 research outputs found

    Canonical formalism for simplicial gravity

    Full text link
    We summarise a recently introduced general canonical formulation of discrete systems which is fully equivalent to the covariant formalism. This framework can handle varying phase space dimensions and is applied to simplicial gravity in particular.Comment: 4 pages, 5 figures, based on a talk given at Loops '11 in Madrid, to appear in Journal of Physics: Conference Series (JPCS

    Breaking and restoring of diffeomorphism symmetry in discrete gravity

    Full text link
    We discuss the fate of diffeomorphism symmetry in discrete gravity. Diffeomorphism symmetry is typically broken by the discretization. This has repercussions for the observable content and the canonical formulation of the theory. It might however be possible to construct discrete actions, so--called perfect actions, with exact symmetries and we will review first steps towards this end.Comment: to appear in the Proceedings of the XXV Max Born Symposium "The Planck Scale", Wroclaw, 29 June - 3 July, 200

    Hot bang states of massless fermions

    No full text
    According to the characterization of local thermal equilibrium states in Local Quantum Physics proposed by Buchholz et al. microscopic and corresponding macroscopic observables are computed for the model of massless, free fermions on Minkowski space. An example for a local equilibrium state describing a hot bang is given, the main step being the proof of its positivity

    Socioeconomic impact of photovoltaic power at Schuchuli, Arizona

    Get PDF
    The social and economic impact of photovoltaic power on a small, remote native American village is studied. Village history, group life, energy use in general, and the use of photovoltaic-powered appliances are discussed. No significant impacts due to the photovoltaic power system were observed

    Operator Spin Foams: holonomy formulation and coarse graining

    Full text link
    A dual holonomy version of operator spin foam models is presented, which is particularly adapted to the notion of coarse graining. We discuss how this leads to a natural way of comparing models on different discretization scales, and a notion of renormalization group flow on the partially ordered set of 2-complexes.Comment: 5 pages, 3 figures, to appear in Journal of Physics: Conference Series. (JPCS

    From the discrete to the continuous - towards a cylindrically consistent dynamics

    Full text link
    Discrete models usually represent approximations to continuum physics. Cylindrical consistency provides a framework in which discretizations mirror exactly the continuum limit. Being a standard tool for the kinematics of loop quantum gravity we propose a coarse graining procedure that aims at constructing a cylindrically consistent dynamics in the form of transition amplitudes and Hamilton's principal functions. The coarse graining procedure, which is motivated by tensor network renormalization methods, provides a systematic approximation scheme towards this end. A crucial role in this coarse graining scheme is played by embedding maps that allow the interpretation of discrete boundary data as continuum configurations. These embedding maps should be selected according to the dynamics of the system, as a choice of embedding maps will determine a truncation of the renormalization flow.Comment: 22 page

    Approximating the physical inner product of Loop Quantum Cosmology

    Get PDF
    In this article, we investigate the possibility of approximating the physical inner product of constrained quantum theories. In particular, we calculate the physical inner product of a simple cosmological model in two ways: Firstly, we compute it analytically via a trick, secondly, we use the complexifier coherent states to approximate the physical inner product defined by the master constraint of the system. We will find that the approximation is able to recover the analytic solution of the problem, which solidifies hopes that coherent states will help to approximate solutions of more complicated theories, like loop quantum gravity

    Brain computer interfaces: psychology and pragmatic perspectives for the future.

    Get PDF
    Whilst technologies, such as psychophysiological measurements in general and electroencephalograms (EEG) in particular, have been around and continually improving for many years, future technologies promise to revolutionise the emerging Information Society through the development of brain-computer interfaces and augmented cognition solutions. This paper explores critical psychological and pragmatic issues that must be understood before these technologies can deliver their potential well. Within the context of HCI, we examined a sample (n =105) BCI papers and found that the majority of research aimed to provide communication and control resources to people with disabilities or with extreme task demands. However, the concepts of usability and accessibility, and respective findings from their substantial research literatures were rarely applied explicitly but referenced implicitly. While this suggests an increased awareness of these concepts and the related large research literatures, the task remains to sharpen these concepts and to articulate their obvious relevance to BCI work

    Gauge-invariant coherent states for loop quantum gravity: I. Abelian gauge groups

    Get PDF
    In this paper, we investigate the properties of gauge-invariant coherent states for loop quantum gravity, for the gauge group U(1). This is done by projecting the corresponding complexifier coherent states defined by Thiemann and Winkler to the gauge-invariant Hilbert space. This being the first step toward constructing physical coherent states, we arrive at a set of gauge-invariant states that approximate well the gauge-invariant degrees of freedom of Abelian loop quantum gravity (LQG). Furthermore, these states turn out to encode explicit information about the graph topology, and show the same pleasant peakedness properties known from the gauge-variant complexifier coherent states. In a companion paper, we will turn to the more sophisticated case of SU(2)

    Spin foam models with finite groups

    Get PDF
    Spin foam models, loop quantum gravity and group field theory are discussed as quantum gravity candidate theories and usually involve a continuous Lie group. We advocate here to consider quantum gravity inspired models with finite groups, firstly as a test bed for the full theory and secondly as a class of new lattice theories possibly featuring an analogue diffeomorphism symmetry. To make these notes accessible to readers outside the quantum gravity community we provide an introduction to some essential concepts in the loop quantum gravity, spin foam and group field theory approach and point out the many connections to lattice field theory and condensed matter systems
    • …
    corecore